Copied to
clipboard

G = C23.369C24order 128 = 27

86th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.9C23, C23.369C24, C22.1292- 1+4, C4⋊C4.332D4, C2.33(D46D4), C23⋊Q8.5C2, C2.29(Q85D4), (C22×C4).65C23, C23.Q8.5C2, (C2×C42).512C22, C22.249(C22×D4), (C22×Q8).430C22, C23.83C2310C2, C23.65C2361C2, C23.78C2312C2, C23.63C2348C2, C2.41(C22.19C24), C24.C22.15C2, C2.C42.126C22, C2.13(C22.35C24), C2.37(C23.36C23), C2.17(C22.50C24), (C4×C4⋊C4)⋊62C2, (C2×C4×Q8)⋊20C2, (C2×C4).342(C2×D4), (C2×C4).856(C4○D4), (C2×C4⋊C4).249C22, (C2×C422C2).5C2, C22.246(C2×C4○D4), (C2×C22⋊C4).143C22, SmallGroup(128,1201)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.369C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.369C24
C1C23 — C23.369C24
C1C23 — C23.369C24
C1C23 — C23.369C24

Generators and relations for C23.369C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=e2=f2=a, g2=ba=ab, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 404 in 235 conjugacy classes, 100 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×Q8, C422C2, C22×Q8, C4×C4⋊C4, C23.63C23, C24.C22, C23.65C23, C23⋊Q8, C23.78C23, C23.Q8, C23.83C23, C2×C4×Q8, C2×C422C2, C23.369C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2- 1+4, C22.19C24, C23.36C23, C22.35C24, D46D4, Q85D4, C22.50C24, C23.369C24

Smallest permutation representation of C23.369C24
On 64 points
Generators in S64
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 43)(2 44)(3 41)(4 42)(5 39)(6 40)(7 37)(8 38)(9 50)(10 51)(11 52)(12 49)(13 22)(14 23)(15 24)(16 21)(17 45)(18 46)(19 47)(20 48)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 62)(34 63)(35 64)(36 61)
(1 19)(2 20)(3 17)(4 18)(5 33)(6 34)(7 35)(8 36)(9 24)(10 21)(11 22)(12 23)(13 52)(14 49)(15 50)(16 51)(25 58)(26 59)(27 60)(28 57)(29 56)(30 53)(31 54)(32 55)(37 64)(38 61)(39 62)(40 63)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 32 3 30)(2 31 4 29)(5 52 7 50)(6 51 8 49)(9 39 11 37)(10 38 12 40)(13 35 15 33)(14 34 16 36)(17 53 19 55)(18 56 20 54)(21 61 23 63)(22 64 24 62)(25 46 27 48)(26 45 28 47)(41 57 43 59)(42 60 44 58)
(1 22 3 24)(2 14 4 16)(5 59 7 57)(6 29 8 31)(9 19 11 17)(10 48 12 46)(13 41 15 43)(18 51 20 49)(21 44 23 42)(25 63 27 61)(26 35 28 33)(30 39 32 37)(34 56 36 54)(38 58 40 60)(45 50 47 52)(53 62 55 64)
(1 21 41 14)(2 24 42 13)(3 23 43 16)(4 22 44 15)(5 56 37 25)(6 55 38 28)(7 54 39 27)(8 53 40 26)(9 46 52 20)(10 45 49 19)(11 48 50 18)(12 47 51 17)(29 64 58 33)(30 63 59 36)(31 62 60 35)(32 61 57 34)

G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,43)(2,44)(3,41)(4,42)(5,39)(6,40)(7,37)(8,38)(9,50)(10,51)(11,52)(12,49)(13,22)(14,23)(15,24)(16,21)(17,45)(18,46)(19,47)(20,48)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,62)(34,63)(35,64)(36,61), (1,19)(2,20)(3,17)(4,18)(5,33)(6,34)(7,35)(8,36)(9,24)(10,21)(11,22)(12,23)(13,52)(14,49)(15,50)(16,51)(25,58)(26,59)(27,60)(28,57)(29,56)(30,53)(31,54)(32,55)(37,64)(38,61)(39,62)(40,63)(41,45)(42,46)(43,47)(44,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,32,3,30)(2,31,4,29)(5,52,7,50)(6,51,8,49)(9,39,11,37)(10,38,12,40)(13,35,15,33)(14,34,16,36)(17,53,19,55)(18,56,20,54)(21,61,23,63)(22,64,24,62)(25,46,27,48)(26,45,28,47)(41,57,43,59)(42,60,44,58), (1,22,3,24)(2,14,4,16)(5,59,7,57)(6,29,8,31)(9,19,11,17)(10,48,12,46)(13,41,15,43)(18,51,20,49)(21,44,23,42)(25,63,27,61)(26,35,28,33)(30,39,32,37)(34,56,36,54)(38,58,40,60)(45,50,47,52)(53,62,55,64), (1,21,41,14)(2,24,42,13)(3,23,43,16)(4,22,44,15)(5,56,37,25)(6,55,38,28)(7,54,39,27)(8,53,40,26)(9,46,52,20)(10,45,49,19)(11,48,50,18)(12,47,51,17)(29,64,58,33)(30,63,59,36)(31,62,60,35)(32,61,57,34)>;

G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,43)(2,44)(3,41)(4,42)(5,39)(6,40)(7,37)(8,38)(9,50)(10,51)(11,52)(12,49)(13,22)(14,23)(15,24)(16,21)(17,45)(18,46)(19,47)(20,48)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,62)(34,63)(35,64)(36,61), (1,19)(2,20)(3,17)(4,18)(5,33)(6,34)(7,35)(8,36)(9,24)(10,21)(11,22)(12,23)(13,52)(14,49)(15,50)(16,51)(25,58)(26,59)(27,60)(28,57)(29,56)(30,53)(31,54)(32,55)(37,64)(38,61)(39,62)(40,63)(41,45)(42,46)(43,47)(44,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,32,3,30)(2,31,4,29)(5,52,7,50)(6,51,8,49)(9,39,11,37)(10,38,12,40)(13,35,15,33)(14,34,16,36)(17,53,19,55)(18,56,20,54)(21,61,23,63)(22,64,24,62)(25,46,27,48)(26,45,28,47)(41,57,43,59)(42,60,44,58), (1,22,3,24)(2,14,4,16)(5,59,7,57)(6,29,8,31)(9,19,11,17)(10,48,12,46)(13,41,15,43)(18,51,20,49)(21,44,23,42)(25,63,27,61)(26,35,28,33)(30,39,32,37)(34,56,36,54)(38,58,40,60)(45,50,47,52)(53,62,55,64), (1,21,41,14)(2,24,42,13)(3,23,43,16)(4,22,44,15)(5,56,37,25)(6,55,38,28)(7,54,39,27)(8,53,40,26)(9,46,52,20)(10,45,49,19)(11,48,50,18)(12,47,51,17)(29,64,58,33)(30,63,59,36)(31,62,60,35)(32,61,57,34) );

G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,43),(2,44),(3,41),(4,42),(5,39),(6,40),(7,37),(8,38),(9,50),(10,51),(11,52),(12,49),(13,22),(14,23),(15,24),(16,21),(17,45),(18,46),(19,47),(20,48),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,62),(34,63),(35,64),(36,61)], [(1,19),(2,20),(3,17),(4,18),(5,33),(6,34),(7,35),(8,36),(9,24),(10,21),(11,22),(12,23),(13,52),(14,49),(15,50),(16,51),(25,58),(26,59),(27,60),(28,57),(29,56),(30,53),(31,54),(32,55),(37,64),(38,61),(39,62),(40,63),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,32,3,30),(2,31,4,29),(5,52,7,50),(6,51,8,49),(9,39,11,37),(10,38,12,40),(13,35,15,33),(14,34,16,36),(17,53,19,55),(18,56,20,54),(21,61,23,63),(22,64,24,62),(25,46,27,48),(26,45,28,47),(41,57,43,59),(42,60,44,58)], [(1,22,3,24),(2,14,4,16),(5,59,7,57),(6,29,8,31),(9,19,11,17),(10,48,12,46),(13,41,15,43),(18,51,20,49),(21,44,23,42),(25,63,27,61),(26,35,28,33),(30,39,32,37),(34,56,36,54),(38,58,40,60),(45,50,47,52),(53,62,55,64)], [(1,21,41,14),(2,24,42,13),(3,23,43,16),(4,22,44,15),(5,56,37,25),(6,55,38,28),(7,54,39,27),(8,53,40,26),(9,46,52,20),(10,45,49,19),(11,48,50,18),(12,47,51,17),(29,64,58,33),(30,63,59,36),(31,62,60,35),(32,61,57,34)]])

38 conjugacy classes

class 1 2A···2G2H4A···4H4I···4Z4AA4AB4AC
order12···224···44···4444
size11···182···24···4888

38 irreducible representations

dim11111111111224
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2D4C4○D42- 1+4
kernelC23.369C24C4×C4⋊C4C23.63C23C24.C22C23.65C23C23⋊Q8C23.78C23C23.Q8C23.83C23C2×C4×Q8C2×C422C2C4⋊C4C2×C4C22
# reps113411111114162

Matrix representation of C23.369C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
400000
040000
004000
000400
000040
000004
,
100000
010000
001000
000100
000040
000004
,
200000
030000
002400
003300
000003
000020
,
030000
300000
001000
000100
000003
000020
,
030000
300000
001200
000400
000001
000010
,
010000
100000
002000
000200
000030
000003

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,3,0,0,0,0,4,3,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,2,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;

C23.369C24 in GAP, Magma, Sage, TeX

C_2^3._{369}C_2^4
% in TeX

G:=Group("C2^3.369C2^4");
// GroupNames label

G:=SmallGroup(128,1201);
// by ID

G=gap.SmallGroup(128,1201);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,120,758,723,100,675,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=e^2=f^2=a,g^2=b*a=a*b,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽